Quiz Game Controller using “Lights and Sounds Buzzers” and Arduino

Arduino Quiz Game Controller (3)

Jeopardy style quiz games are favorites for creating excitement and educational instruction at the same time.  Teachers, summer camp counselors, and even industry educators find this type of game to help generate interest and involvement from the participants.

Arduino Quiz Game Controller (3)

The idea behind the game is simple, but sometimes finding a device that will perform the “first to respond” lockout function can be problematic.  Here is YAQGC (Yet Another Quiz Game Controller 🙂 based on some pretty neat lighted buzzers and an Arduino put in to a project box.

While the “Lights and Sounds Buttons” from Learning Resources were designed as “stand alone” devices, a few modifications allows them to be connected to and controlled by an Arduino controller.  The “Lights and Sounds Buzzers” make a professional looking and fun implementation of a Quiz Game controller.

The buzzers are modified to plug into a base unit and provide “button press” signals and accept an “activation” signal.

The control box houses the Arduino Uno, the reset button, and four LEDs.

While the button modifications are a little tedious, intermediate soldering skills and patience will produce a nice looking and fun to use Quiz Game Controller.

In addition to capturing the first to respond “winner”, the controller also captures 2nd, 3rd, and 4th place in order of button press.  The order is indicated on the control box LEDs.  Of course the beauty of having a programmable controller is tuning it to just the way you want it.  Other game modes are possible, including “Wheel of Fortune” modes, although this version of the Arduino program only implements the “Jeopardy” style game.

Let’s get started!

YouTube demo of completed system

Background and instructions on www.projectnotions.com


Step 2: Button Modifications


The button is modified to accomplish three functions: * First, to bring to the control box a line when the button is pressed. * Second, to bring a line from the control box to the button to turn on the lights and sound. * Third, provide a relay that allows the sound to be turned off.

Because there are 4 things we want to do (ground, button press, activate lights, activate sound) and we only have 3 wires, we have to combing two functions using one wire. We accomplish this by taking advantage that the logic on the button does it’s own management of the lights and sounds function. When the “activate” line goes high for about 20ms the button logic activates the light and sound. By connecting a compact relay to this same line we can control the sound in an independent way.

Here are the states we manage on the “activate” line.

–   Low – The button is off. If it was previously activated, it will turn itself off after about 2.5 to 3 seconds.
High Pulse – We drive the activate button high for 20ms, and then drive it low again. The button logic will turn on the lights and sound for 2.5 to 3 seconds, but because we connected the speaker through the relay, the relay will only stay on for 20ms. So, we don’t really hear any sound because the relay has disconnected the speaker from the circuit.-
–   High Solid – We drive the activate button high for about 2.5 seconds. The relay keeps the speaker connected to the circuit for the entire duration of the button’s “activation time.” and we both see the lights AND heard the sound.

The button schematic is below.

With these modifications we can program the Arduino to mange the lights and sounds independently. Our initial program turned both lights and sounds on for the first cycle, and then just turned the lights on over and over again until the reset button was pressed or until the timeout expired.

It is somewhat of a tight fit in the button and we chose a 2.5mm stereo phone jack for the connector to minimize the space required. The four main changes are:

Quiz Game Controller schematic (3)

Cut the pc board trace to separate the “button press” signal from the “activation line.”
Drill a hole, countersink it, and mount the phone jack.
Mount the compact relay.
Cut and solder the necessary wires.

Step by step instructions:
1. Collect the parts

4x Lights and Sounds Buzzers
4x Submini phone Jacks
4x Reed relays
Hookup wire

2. Disassemble the buttons

Remove the four feet from the bottom (A small flathead screwdriver might help.)
Remove the four screws
Remove the battery compartment cover
Repeat for each button

3. Drill a hole in the button base for the submini jack

Location position for hole for submini jack
Drill pilot hole using Dremel or similar tool
Carefully expand the hole using a 5/32” drill bit
Check for fit, and carefully recess the hole from the inside, so the jack can be threaded
Do not mount the submini jack in the hole yet
Repeat for each button

4. Cut the button PC board where the pushbutton switch makes contact

Put batteries (2 AAA) in the unit, and press the button confirming it works
Remove the batteries
Remove plastic tape covering the trace (save to put back later, and be careful to leave most of the tape that holds the button in place. If just cutting the tape around the trace area seems to be easier, then use a small sissors and tweesers to remove the tape.
Using an exacto knife carefully cut the PC board trace (see picture below)
Leave enough trace on the board to solder a wire on each end of the broken trace.
After cutting the trace, replace the batteries and press the button while holding a jumper wire on both sides of the cut trace. This will confirm that the button is still working.

Button PC Board Trace Cut Point
6. Connect and solder the wires to components

Using the schematic as a guide, solder the wires to connect the components.

7. Assemble the button and test it

It might be helpful to assemble a 2.5mm male plug with individual wires to facilitate testing. Use the plug (or even put a plug partially in the jack) and make a connection between the middle and the tip. Press the button and it should activate the lights and sounds as normal. With the plug removed pressing the button should have no effect.


Read more: Quiz Game Controller using “Lights and Sounds Buzzers” and Arduino

Leave a Comment

Your email address will not be published. Required fields are marked *