Graphene Electronic Circuits with Atomic Precision

Abstract

The use of graphene in electronic devices requires a band gap, which can be achieved by creating nanostructures such as graphene nanoribbons. A wide variety of atomically precise graphene nanoribbons can be prepared through on-surface synthesis, bringing the concept of graphene nanoribbon electronics closer to reality. For future applications it is beneficial to integrate contacts and more functionality directly into single ribbons by using heterostructures. Here, we use the on-surface synthesis approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single graphene nanoribbon consisting of 5- and 7-atom wide segments. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy, scanning tunneling microscopy, and conductance measurements complemented by density functional theory and transport calculations. These junctions are relevant for developing contacts in all-graphene nanoribbon devices and creating diodes and transistors, and act as a first step toward complete electronic devices built into a single graphene nanoribbon.

Introduction

Rapid progress has been made in high-performance graphene devices for the study of new physical phenomena1,2,3,4,5. Mainstream applications, however, require a nonzero band gap6, 7. This effect can be introduced in a variety of ways, one of the most prominent being the preparation of narrow strips of graphene known as graphene nanoribbons (GNRs)8,9,10. The properties of these GNRs sensitively depends on width, orientation, and edge geometry5, 9, 11,12,13. Armchair-terminated GNRs are either metallic or semiconducting, depending on their exact atomic width: 3 N or 3 N + 1 (where N is an integer) atom wide armchair GNRs are semiconductors, and those in the 3 N + 2 family are metallic5, 9,

14,15,16,17,18
. This extreme sensitivity to the detailed atomic structure also implies that traditional fabrication methods, such as e-beam lithography, are not precise enough to fabricate structures of sufficient quality. This limitation has been overcome with the on-surface, bottom-up synthesis of atomically precise GNRs. In this route, precursor molecules containing halogen atoms are evaporated onto a metal substrate, typically Au(111), and heated to form polymeric chains via Ullman coupling. These chains are converted into fully aromatic GNRs through a cyclo dehydrogenation step occurring at a higher temperature than the initial polymerization step9.
The wide variety of atomically precise GNRs that can be prepared through on-surface synthesis10 has brought the concept of GNR electronics closer to reality with the first prototype transistors having been demonstrated19. For future applications, direct integration of electrical contacts and functional electronic components such as diodes and tunnel barriers into a single ribbon would be highly advantageous. This can be realized by synthesizing GNR hetero structures using a combination of different precursor molecules. For example, semiconductor-semiconductor hetero structures in single GNRs have been demonstrated through synthesis from precursors that give rise to segments of different widths20 or segments with sub situational nitrogen doping21.
Here, we use the bottom-up approach to fabricate a metal-semiconductor junction and a tunnel barrier in a single GNR by utilizing atomically perfect connections between 5- and 7-atom wide segments (denoted as 5-GNR and 7-GNR, respectively). Not only are such junctions relevant for developing contacts in all-GNR devices, they also provide an additional route to create diodes and transistors10, 19,20,21. We characterize the atomic scale geometry and electronic structure by combined atomic force microscopy (AFM), scanning tunneling microscopy (STM), and conductance measurements. The GNR equivalent of a tunnel barrier constitutes a first step toward complete electronic devices built into a single GNR.

Results

Synthesis of GNR hetero junctions

Figure 1a shows the precursors used in this study: 10,10′-dibromo-9,9′-bianthryl (DBBA) and 3,9-dibromoperylene (DBP). These precursors can be used to grow semiconducting (band gap of 2.7 eV) and metallic GNRs, respectively917. Co-deposition of both precursors on Au(111) was used to prepare hetero junctions, as well as hetero structures (ribbons with more than one junction). The overview STM scan shown in Fig. 1b displays nanoribbons with a clear width modulation, corresponding to 5-GNR and 7-GNR segments, indicating successful copolymerization. A higher resolution AFM image of a longer ribbon with several 5-GNR and 7-GNR segments is shown in Fig1c. A hetero junction consisting of n monomers of the 5-GNR precursor connected to m monomers of the 7-GNR precursor is referred to as 5/7-GNR(n,m).
Read More: Graphene Electronic Circuits with Atomic Precision

Leave a Comment

Your email address will not be published. Required fields are marked *